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Abstract
We compare the classical scattering of kinks in the (1 + 1) Higgs model with its
analogous noncommutative counterpart. While at a classical level we are able to
solve the scattering at all orders finding a smooth solution, at a noncommutative
level we present only perturbative results, suggesting the existence of a smooth
solution also in this case.

PACS numbers: 11.10.Nx, 11.15.−q, 12.60.Fr

1. Introduction

Recently, noncommutative gauge theories have been investigated in view of their eventual
role for a better understanding of our physical world. The general approach is introducing
noncommutativity as a one-parameter modification of gauge theories, but most of these studies
do not give emphasis to a possible clash between noncommutativity and the basic principles
on which particle physics is built.

In this sense, space–time noncommutativity has represented an exception to this approach,
since this new type of nonlocality in time may be very dangerous to the maintenance of the
basic rules of standard quantum field theory [1]. In fact, quantum field theories with space–
time noncommutativity have no straightforward Hamiltonian quantization, which is usually
the warranty for unitarity and causality.

There are two main positions regarding such theories: someone claims that these theories
are physically inconsistent because they break perturbative unitarity of the S-matrix [1–4],
someone else claims that restoring unitarity is possible modifying the definition of perturbation
theory on noncommutative space–times [5–8].

In this paper, we attempt to give a contribution to this subject at a classical level comparing
the scattering of wave packets in the commutative theory with the noncommutative case.
Usually already in the classical setting it is possible to find the seeds of the obstacles in the
quantization procedure. We have searched for a model which has some chance to be a solvable
system and where nonperturbative effects can be detected.

0305-4470/05/020509+11$30.00 © 2005 IOP Publishing Ltd Printed in the UK 509

http://dx.doi.org/10.1088/0305-4470/38/2/015
http://stacks.iop.org/ja/38/509


510 P Valtancoli

We have chosen the Higgs model in (1 + 1)-dim. which allows for soliton solutions,
called kinks, which interpolate between the possible vacua of the Higgs potential. The
scattering of kinks is the natural setting in which to compare the commutative results with the
noncommutative ones (see also [9]). To simplify the discussion, we have stretched the kinks
such that the wavefronts are sharp (ultra-relativistic limit). At a commutative level we find
that this ansatz is self-consistent at all orders of perturbation theory, and we are able to reduce
the equations of motion to a nonlinear differential equation in a single variable that, due to the
nonlinearity, we have studied numerically.

At a noncommutative level, the same ansatz is no longer stable and it is not possible to
reduce the equations of motion to a single variable. We are obliged to analyse the problem
perturbatively, also if the structure of the solution is still simple enough, that could enable us
to reach a nonperturbative result with a deeper study.

We essentially show how noncommutativity acts on the scattering of kinks; the sharpness
of wavefronts can be maintained only at a nonperturbative level in the commutative case,
while a correction of the profiles of the wavefronts, which lose their sharpness, of the order
of the noncommutative parameter

√
θ is needed in the noncommutative one. Let us note

that this effect is present only when the two shock waves scatter each other and is not if the
two waves proceed in the same direction. Of course the scattering is anticipated with respect
to the commutative case due to this ‘apparent width’ of the wave packets. This implies that
noncommutative kinks cannot be stretched to sharp wavefronts during the scattering process, a
limitation not present in the classical case. Of course, it would be more interesting to interpret
a complete noncommutative scattering solution, which we leave to a future research.

2. Higgs model for real scalar field

Our aim was to find an exactly solvable scattering problem to compare with the
noncommutative case, possibly at a nonperturbative level. Our choice has been to consider
the classical (1 + 1) Higgs model with a real scalar field defined by the Lagrangian

L = 1
2∂µφ∂µφ + 1

2m2φ2 − 1
4λφ4. (2.1)

The Higgs mechanics is based on making perturbation theory around the nontrivial
minimum of the potential. To find it we need to introduce the corresponding Hamiltonian:

π = ∂L
∂(∂0φ)

= ∂0φ H = 1

2
(π2 + |∂iφ|2) + V (φ) V (φ) = 1

4
λφ4 − 1

2
m2φ2.

(2.2)

The minimum of the potential (2.2) is reached when

∂V (φ)

∂φ
= 0 → φ2 = m2

λ
. (2.3)

Let us choose for simplicity, the coupling constants such that m = √
λ and φ = ±1 are

the two nontrivial minima.
The corresponding equations of motion

�φ = λφ(1 − φ2) (2.4)

can be simplified by defining the light-cone variables:

u = x − t

2
v = x + t

2
� = −∂u∂v ∂u∂vφ = −λφ(1 − φ2). (2.5)
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Analysing such equations one note that φ = 0,±1 are possible solutions. Let us generalize
them by introducing as an ansatz a sum of step functions which interpolate between the three
values 0,±1:

φ(0) = −1 + p(�(u) − �(v)) p = 1, 2. (2.6)

Due to the dependence from single light-cone variables, φ(0) is certainly a zero of the first
member of equation (2.5); however the second member is null only if t < 0. For t > 0 the
ansatz φ(0) is no longer valid and must be generalized to

φ = −1 + p(�(u) − �(v)) + f (uv)�(v)�(−u) (2.7)

where the unknown function f is dependent on the single variable uv.1 This interacting
solution must evolve such that asymptotically, at infinite time and finite space, i.e., for
uv → −∞, the function reaches a constant value. The particular value f (−∞) is determined
by solving the equations of motion (2.5).

The solution with p = 1 has as ‘in state’ φin = 0 (for t → −∞), while the ‘out state’ (for
t → +∞) has to be determined by solving the equations of motion (2.5), and it is parametrized
as fp=1(−∞) − 2.

The solution with p = 2 has as ‘in state’ φin = 1 (for t → −∞) and the ‘out state’
fp=2(−∞) − 3.

In synthesis,

p = 1 φin = 0 → φout = fp=1(−∞) − 2

p = 2 φin = 1 → φout = fp=2(−∞) − 3.
(2.8)

By introducing the complete ansatz (2.7) into the equations of motion (2.5) one is able to
show that the ansatz closes if all the following conditions are met:

f (0) = 0 f ′(uv) regular around uv ∼ 0

(uv)f ′′(uv) + f ′(uv) = λ(f (uv) − p)(f (uv) − p − 1)(f (uv) − p − 2)

p(p − 1)(p − 2) = 0.

(2.9)

The ansatz closes for the values p = 0, 1, 2; since the value p = 0 is trivial, in the
following we will discuss only the solution to the differential equation (2.9) for the values
p = 1, 2.

By introducing the variable

x = −6λuv (2.10)

we are led to discuss the solution to the following equation:

xf ′′(x) + f ′(x) + (f (x) − p)(f (x) − p − 1)(f (x) − p − 2)/6 = 0 (2.11)

in the range 0 < x < +∞.
We will show that the nonlinear equation (2.11) is consistent with the following boundary

values:

fp=1(x = +∞) = 1 fp=2(x = +∞) = 4 (2.12)

leading to classify the possible scenarios:

p = 1 φin = 0 → φout = −1

p = 2 φin = 1 → φout = 1.
(2.13)

1 To avoid confusion, we define the step functions as �(u) = 1 if u > 0, or 0 otherwise, �(v) = 1 if v > 0,

or 0 otherwise, and �(−u) ≡ 1 − �(u).
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In the first case, the scattering of kinks allows us to describe the decay from the unstable
state φin = 0 to the stable minimum of the potential φout = −1; in the second case, the
scattering of kinks does not alter the stability of the minimum φin = φout = 1.

Let us start to solve (2.11) with p = 1. In this case, we define

f (x) = 1 − g(x) g(0) = 1

xg′′(x) + g′(x) + g(x)(g(x) + 1)(g(x) + 2)/6 = 0.
(2.14)

Being a second-order differential equation, it seems that the only boundary value g(0) = 1
is not enough to determine completely the solution, but it turns out that another physical
requirement is necessary to obtain a smooth solution, i.e., the absence of logarithmic terms
around x = 0. The request is sufficient to determine the asymptotic value g(+∞) = 0, which
can be achieved or by a direct numerical computation with Mathematica, or with a careful
inspection of the differential equation. We have done both checks and they completely agree.

Firstly, let us suppose that asymptotically g(x) → 0 for x → +∞, then the nonlinearity
can be avoided and the nonlinear problem (2.11) can be linearized to

xg′′(x) + g′(x) + g(x)/3 = 0

g(0) = 1 g(x) regular around x = 0
(2.15)

which can be solved by the Bessel function:

g(x) = J0

(
2

√
x

3

)
. (2.16)

Since it is well known that the asymptotic behaviour of the Bessel function

lim
x→+∞ J0(x) =

√
2

πx
cos

(
x − π

4

)
(2.17)

we conclude that the asymptotic value g(+∞) = 0 is consistent with the hypothesis, and we
have learned that the solution of (2.11) has asymptotic damped oscillations behaving as x− 1

4 .
The difference between linear and nonlinear solutions is concentrated around x = 0;

however, supposing that the value of g(x) is always greater than −1, at the minima where
g′(x) = 0, the value of the second derivative g′′(x) is always opposite to the value of the
function g(x), confirming the oscillating character of the solution around the value g = 0,
also at the nonlinear level. At this point, we are ready to compare these considerations with a
direct numerical computation with Mathematica.

We chose the following method. Firstly, we developed in power series the solution around
zero and put the recurrence relations for the coefficients of the series into Mathematica. The
power series truncated at, let us say, 100 steps has a certain convergence radius; inside it we
can trust the approximated values of the function g(x). Then, we used these approximated
values to build the recurrence relations around another fixed point inside the convergence
radius of the first power series, and we iterated the procedure. In this way, we have found
the locus of the first six minima (these results should be taken as indicative values due to the
imprecision of the extrapolated values)

x = 11 g(x) = −0.62

x = 90 g(x) = −0.49

x = 244 g(x) = −0.36

x = 462 g(x) = −0.32

x = 745 g(x) = −0.28

x = 1089 g(x) = −0.25

(2.18)
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Figure 1. The first minimum for p = 1.

and of the first five local maxima:

x = 41 g(x) = 0.37

x = 161 g(x) = 0.29

x = 346 g(x) = 0.25

x = 598 g(x) = 0.23

x = 911 g(x) = 0.21.

(2.19)

In figure 1 we have plotted with Mathematica two curves representing the approximated
value of the function g(x) calculated from the power series truncated at an even and odd
number, respectively (for example, 100 and 99 steps).

By analysing these results we find agreement with all the preliminary discussion, since
the minimum value of g(x) (−0.62) is greater than −1, from which damped oscillations
follow until reaching the linear behaviour (2.17). Thus, by combining numerical and analytic
methods we have full control of the nonlinear equation (2.14).

Let us now discuss the solution to the equations of motion for p = 2, in which case the
final state of the Higgs field φout = fp=2(−∞) − 3. By defining f (x) = 2(1 − g(x)) and
rescaling x → 2x, we obtain the following differential equation for g(x):

xg′′(x) + g′(x) + g(x)(1 + g(x))(1 + 2g(x))/6 = 0. (2.20)

At a first sight this equation looks very similar to the one discussed before, but in reality
its solution is quite different. Firstly, we note that it is not clear what is the final point of
oscillation. There are at least two possible choices:

(i) g(x) oscillates around the value g = 0; then to be self-consistent, at the stationary points,
the value of the second derivative must be opposite to the value of the function and this
happens if the function is confined over the minimum value −1/2.

(ii) g(x) oscillates around the value g = −1; this is possible if the local maxima and minima
are confined under the maximum value −1/2.

Only with a numerical computation have we been able to discern the right value. By using
the same method illustrated before we have found the locus of the first four minima

x = 41 g(x) = −1.14

x = 212 g(x) = −1.10

x = 506 g(x) = −1.08

x = 922 g(x) = −1.07

(2.21)
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Figure 2. The first minimum for p = 2.

and of the first four local maxima:

x = 108 g(x) = −0.85

x = 342 g(x) = −0.89

x = 697 g(x) = −0.91

x = 1173 g(x) = −0.92.

(2.22)

We conclude that the possibility (ii) is realized (see figure 2), and therefore g(x) has an
asymptotic value −1, with oscillations that are damped by a factor x−1/4, the typical factor of
the Bessel function (2.17). This completes the demonstration of the boundary values depicted
in (2.12).

3. Noncommutative case

We are going to deform the Higgs model with a noncommutative relation between the
coordinates, for example,

[u, v] = iθ ↔ [x, t] = 2iθ. (3.1)

This can be accomplished by deforming the ordinary product of fields into an associative
star product as follows:

φ1(u, v) ∗ φ2(u, v) = lim
u1→u2

lim
v1→v2

ei θ
2 (∂u1 ∂v2 −∂u2 ∂v1 )φ1(u1, v1)φ2(u2, v2). (3.2)

The Lagrangian of the Higgs field with a noncommutative star product is defined as

L =
∫

d2x

(
1

2
∂µφ∂µφ +

1

2
m2φ2 − λ

4
φ ∗ φ ∗ φ ∗ φ

)
(3.3)

and the equations of motion (with m2/λ = 1) are nonlocal in time:

∂u∂vφ = λφ ∗ (φ ∗ φ − 1). (3.4)

It is not clear at this point how to complete the ansatz (2.6)

φ(0) = −1 + p(�(u) − �(v)) (3.5)

in order to reduce the equations of motion (3.4) into a self-consistent set of equations. We
prefer to set up a perturbative method. In this framework, the natural perturbative parameter
is the coupling constant λ, and we develop the solution φ as a sum

φ = φ(0) + λφ(1) + O(λ2). (3.6)
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Starting from the ansatz φ(0) (3.5), we calculate the source (3.4) at the first perturbative
order in λ. In the case of the ordinary Higgs model, we would obtain

∂u∂vφ
(1) = λφ(0)(φ(0)2 − 1)

= λp(p − 1)(p − 2)(�(u) − �(v)) − 6λp2�(−u)�(v). (3.7)

For the special cases p = 1, 2 the first term in the second member cancels out and the
main contribution comes from the term �(−u)�(v) which is different from zero only for
t > 0, and in the interval −t < x < t .

The interacting field φ(1) is then proportional to x2 − t2

φ(1) = −6λp2uv�(−u)�(v). (3.8)

In the noncommutative case, we limit ourselves to a calculation of φ(1) always starting
from the ansatz φ(0) but replacing the ordinary product with the star product

∂u∂vφ
(1)
NC = λφ(0) ∗ (φ(0) ∗ φ(0) − 1). (3.9)

However, we encounter the first difficulty, i.e., the star product involving step functions
seems to be ill-defined, being a sum of infinite distributions. We will do the following trick,
i.e., solving the star product using the Fourier transform.

As an exercise, let us calculate the ordinary product φ(0)2 using the Fourier transform of
φ(0). It is more convenient to perform the Fourier transform of φ(0)(u, v) with respect to the
single variable u:

φ̃(k, v) = 1√
2π

∫ +∞

−∞
du e−ikuφ(0)(u, v)

=
√

2π

[
−(1 + p�(v))δ(k) + lim

ε→0

p

2π i(k − iε)

]
. (3.10)

The ordinary product φ(0)2 is mapped, under the Fourier transform, to a convolution
product:

φ(0)2(u, v) → 1√
2π

∫ +∞

−∞
dq φ̃(q, v)φ̃(k − q, v)

=
√

2π

[
(1 + p(p + 2)�(v))δ(k) + lim

ε→0

p(p − 2) − 2p2�(v)

2π i(k − iε)

]
(3.11)

which is exactly the Fourier transform of

φ(0)2(u, v) = 1 + p(p + 2)�(v) + (p(p − 2) − 2p2�(v))�(u). (3.12)

The tool that we need during the calculation of the noncommutative case is how the star
product of two functions of u and v is translated into a convolution product of their Fourier
transforms. It is not difficult to show that φ1 ∗ φ2, defined the Fourier transforms

φ1(u1, v1) = 1√
2π

∫ +∞

−∞
dq1 eiq1u1 φ̃1(q1, v1)

φ2(u2, v2) = 1√
2π

∫ +∞

−∞
dq2 eiq2u2 φ̃2(q2, v2),

(3.13)

is mapped to the following NC convolution product:

(̃φ ∗ φ)(k, v) = 1√
2π

∫ +∞

−∞
dq φ̃1

(
q, v +

θ

2
(k − q)

)
φ̃2

(
k − q, v − θ

2
q

)
. (3.14)

We note from this definition that if the two functions are equal (φ1 = φ2), then, due to the
symmetry of the convolution product q → k − q, the dependence on the θ variable becomes
even, as happens for the star product of the same function.
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Let us calculate the star product φ(0) ∗ φ(0) using the rule (3.14)

˜(φ(0) ∗ φ(0))(k, v) =
√

2π

[
(1 + p(p + 2)�(v))δ(k)

+ lim
ε→0

p(p − 2) − p2
(
�

(
v + θ

2 k
)

+ �
(
v − θ

2 k
))

2π i(k − iε)

]
. (3.15)

Therefore, the pure noncommutative contribution is

˜(φ(0) ∗ φ(0))NC(k, v) = − p2

√
2π i

lim
ε→0

(
�

(
v + θ

2 k
)

+ �
(
v − θ

2 k
) − 2�(v)

k − iε

)
. (3.16)

In the following, we will assume for simplicity that uv > 0 and θ > 0, otherwise some
signs function should be added, with the result of making the notation heavier.

Let us perform the anti-Fourier transform of (3.15) to have a better idea of the
noncommutative source:

(φ(0) ∗ φ(0))NC =
∫ θ

0
dθ

∂

∂θ
(φ(0) ∗ φ(0))NC = 1√

2π

∫ θ

0
dθ

∫ +∞

−∞
dk eiku ∂

∂θ
˜(φ(0) ∗ φ(0))NC

= −p2

π

∫ 2uv
θ

+∞
dx

sin x

x
= −p2

π

[
Si

(
2uv

θ

)
− Si(+∞)

]
. (3.17)

This function is a special function, known as the sine integral, defined as

Si(z) =
∫ z

0
dx

sin x

x
Si(+∞) = π

2
. (3.18)

Therefore, we conclude that the noncommutative part of the source has support only in
the small region 0 < uv � θ (otherwise the contribution is negligible) around the sharp wave
packets, and its role is to give a size of order

√
θ to the noncommutative kinks.

The next step is to perform the complete calculation of the source (3.9). We will compare
again the commutative case with the noncommutative one, to be able to extract the pure
noncommutative part. In the commutative case, we need to compute in Fourier transform
the product φ(0)(φ(0φ(0) − 1) where

φ̃(0) =
√

2π

[
−(1 + p�(v))δ(k) + lim

ε→0

p

2π i(k − iε)

]

˜(φ(0)φ(0) − 1) =
√

2π

[
p(p + 2)�(v)δ(k) + lim

ε→0

p(p − 2) − 2p2�(v)

2π i(k − iε)

]
.

(3.19)

We obtain

˜φ(0)(φ(0)φ(0) − 1)(k, v) =
√

2π

[
−p(p + 1)(p + 2)�(v)δ(k)

+ lim
ε→0

p(p − 1)(p − 2) + 6p2�(v)

2π i(k − iε)

]
. (3.20)

It is easy to verify the correctness of this result, remembering that

φ(0)(φ(0)2 − 1) = −p(p + 1)(p + 2)�(v) + p(p − 1)(p − 2)�(u) + 6p2�(u)�(v). (3.21)

Let us compute the noncommutative case:

φ(0) ∗ (φ(0) ∗ φ(0) − 1) (3.22)
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where

˜(φ(0) ∗ φ(0) − 1) =
√

2π

[
p(p + 2)�(v)δ(k) +

1

2π i
lim
ε→0

p(p − 2)

k − iε

− lim
ε→0

p2
(
�

(
v + �

2 k
)

+ �
(
v − �

2 k
))

2π i(k − iε)

]
. (3.23)

After simple but tedious calculations we arrive at the following result:

˜φ(0) ∗ (φ(0) ∗ φ(0) − 1)(k, v) =
√

2π

[
−p(p + 1)(p + 2)�(v)δ(k) + lim

ε→0

p(p − 1)(p − 2)

2π i(k − iε)

+ lim
ε→0

p3
(
�

(
v + θ

2 k
)
�

(
v − θ

2 k
) − �(v)

)
2π i(k − iε)

+ lim
ε→0

3p2
(
�

(
v + θ

2 k
)

+ �
(
v − θ

2 k
))

2π i(k − iε)

− p3

2(2π i)2
lim
ε→0

∫ +∞

−∞
dq

�(v + θq) + �(v − θq) − 2�(v)(
q + k

2 − iε
)(

k
2 − q − iε

)
]

. (3.24)

Let us extract the pure noncommutative part which is made of three parts:

˜φ(0) ∗ (φ(0) ∗ φ(0) − 1)NC(k, v, θ) = I1(k, v, θ) + I2(k, v, θ) + I3(k, v, θ). (3.25)

where

I1(k, v, θ) = lim
ε→0

3p2
(
�

(
v + θ

2 k
)

+ �
(
v − θ

2 k
) − 2�(v)

)
√

2π i(k − iε)

I2(k, v, θ) = lim
ε→0

p3
(
�

(
v + θ

2 k
)
�

(
v − θ

2 k
) − �(v)

)
√

2π i(k − iε)

I3(k, v, θ) = −p3
√

2π

2(2π i)2
lim
ε→0

∫ +∞

−∞
dq

�(v + θq) + �(v − θq) − 2�(v)(
q + k

2 − iε
)(

k
2 − q − iε

) .

(3.26)

Let us compute the anti-Fourier transforms of Ii :

Ii(u, v) = 1√
2π

∫ θ

0
dθ

∫ ∞

−∞
dk eiku ∂

∂θ
Ii(k, v, θ). (3.27)

With the trick of integrating and deriving with respect to θ , all the integrals can be solved,
obtaining the following results:

φ(0) ∗ (φ(0) ∗ φ(0) − 1)NC(u, v, θ) = 3p2 + p3(�(v) − �(u))

π

[
Si

(
2uv

θ

)
− Si(+∞)

]
.

(3.28)

Let us start integrating this source by taking the position

φ
(1)
i (u, v) = 3p2 + p3(�(v) − �(u))

2π

∫ θ

0
dθ φ(1)

(
2uv

θ

)
(3.29)

where

∂u∂vφ
(1)

(
2uv

θ

)
= −2λ

θ
sin

(
2uv

θ

)
. (3.30)
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Let us define x = 2uv/θ , then equation (3.30) is equivalent to

∂x(x∂xφ
(1)(x)) = −λ sin x → φ(1)(x) = λCi

(
2uv

θ

)
(3.31)

where we have introduced the cosine integral function defined as

Ci(z) =
∫ z

+∞
dx

cos x

x
. (3.32)

However, the steps functions give rise to additional contributions that we need to subtract

φ
(1)
ii (u, v) = −λθ

(
3p2 + p3(�(v) − �(u))

2π

)
log

(
2uv

θ

)
. (3.33)

We have arrived at the final formula:

φ(1) = λ

(
3p2 + p3(�(v) − �(u))

2π

) [
θ

(
cos

(
2uv

θ

)
+ Ci

(
2uv

θ

)
− log

(
2uv

θ

))

+ 2uv

(
Si

(
2uv

θ

)
− Si(+∞)

)]
. (3.34)

Fortunately, the divergent terms around the wave packets uv ∼ 0 cancels out. Again
this field has support primarily only in a small region around the wave packets 0 < uv � θ ,
apart from the oscillating cosine term and a logarithmic term which is less divergent than
the corresponding classical term for uv large, as in equation (3.8). The asymptotic states are
modified by noncommutativity when the two wave packets scatter each other, while they are
not if the shock waves move in the same direction.

4. Conclusions

In this paper, we have discussed an example of scattering which hopefully can be solved at
a nonperturbative level. We have compared the classical scattering of kinks in the (1 + 1)

Higgs model with the noncommutative case. At a classical level we have found a smooth
solution without divergences. This solution is based on introducing an ansatz, which reduces
the equations of motions to a single nonlinear differential equation. We have been able to have
full control of it by combining analytic and numerical methods. The solution of this equation
is similar to a Bessel function of order zero, which contains damped oscillations towards a
constant asymptotic value.

In the noncommutative case, the solution we have found is only perturbative; at this
level there appear logarithmic terms which are divergent both near the wavefronts and at
infinity. However, the whole combination of terms cooperates to eliminate the divergences
near the wavefronts. Instead the divergence at infinity cannot be eliminated at a fixed order of
perturbation theory, but only re-summing all orders of perturbation theory.

The peculiar characteristic of noncommutativity is to dress the sharp wavefronts of the
kinks giving them a size of order

√
θ permanently, also when the wavefronts are far apart.

Noncommutativity modifies the asymptotic states for two-body scattering, when the two shock
waves scatter each other, while it does not alter the classical kink configuration if the two shock
waves proceed in the same direction. May be this property complicates the quantization of
such theories in terms of the S-matrix approach.

This work leaves open many questions; firstly, it would be nice to solve this model
exactly at all orders and prove that there is a smooth solution describing the scattering of
noncommutative kinks, re-summing in a finite term the potentially dangerous logarithmic
term we have found perturbatively. Then investigating deeply the characteristics of the
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noncommutative scattering we can look for the right axioms on which to base the quantization
of such theories.
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